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Definiciones

f ∶ {0, 1}n → {0, 1} 22
n funciones

f es constante ssi ∃k ∈{0, 1} ∀x∈{0, 1}n f(x) = k
2 funciones constantes

f es equilibrada ssi ∣{x ∈ {0, 1}n∣f(x) = 0}∣ = ∣{x ∈ {0, 1}n∣f(x) = 1}∣
2n!

2n−1!
2 funciones equilibradas

Hay muchas funciones que no son ni constantes ni equilibradas.



El problema

Dada una función f ∶ {0, 1}n → {0, 1} constante o equilibrada,
determinar en cuál categorı́a está

Complejidad algorı́tmica: cuantas veces se llama la función f
f es una caja negra, no se considera su complejidad algorı́tmica

Algoritmo clásico: Evaluar f sobre la mitad de {0, 1}n más 1 elemento
Si todos los valores son idénticos, f es constante, si no, f es equilibrada

2n−1 + 1 evaluaciones de f ⇒ complejidad algorı́tmica: O(2n)



Circuito cuántico para Deutsch–Jozsa, n = 1
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Of ∶ Oráculo para f { r = 0 ∶ f constante
r = 1 ∶ f equilibrada



Circuito cuántico para Deutsch–Jozsa, n ∈ N
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Of ∶ Oráculo para f {∀i ri = 0 ∶ f constante
∃i ri = 1 ∶ f equilibrada



Oráculo

∣x1⟩

∣x2⟩
. . .
∣xn⟩

∣y⟩

Of

∣x1⟩

∣x2⟩

∣xn⟩

∣y ⊕ f(x1, x2, ..., xn)⟩

y ∈ {0, 1} xi ∈ {0, 1} f ∶ {0, 1}n → {0, 1}



Notación entera para los vectores de la base

n: Número de qubits k: Representación binaria de k en n bits
k ∈ N 0 ≤ k < 2n

∣k⟩ = ∣k1⟩ ⊗ ∣k2⟩ ⊗ ...⊗ ∣kn⟩ =
n

⊗
j=1
∣kj⟩ = ∣k1k2...kn⟩

∣0⟩ = ∣000...000⟩
∣1⟩ = ∣000...001⟩
∣2⟩ = ∣000...010⟩

. . .
∣2n − 2⟩ = ∣111...110⟩
∣2n − 1⟩ = ∣111...111⟩



Oráculo

∣x⟩

∣y⟩
Of

∣x⟩

∣y ⊕ f(x)⟩
Of (∣x⟩ ⊗ ∣y⟩) = ∣x⟩ ⊗ ∣y ⊕ f(x)⟩

y ∈ {0, 1} x ∈ {0, 1}n f ∶ {0, 1}n → {0, 1}

OfOf = I (ver demostración con n = 1)

Of = O−1f Of es hermitiano (unitario y autoinversa)



Transformación de Hadamard (1)

H⊗n =
n

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
H ⊗H ⊗ ...⊗H = ⊗

n
H

H ∣0⟩ = ∣0⟩+∣1⟩√
2

H ∣1⟩ = ∣0⟩−∣1⟩√
2

H ∣b⟩ = 1√
2
∑

x∈{0,1}
(−1)bx ∣x⟩ b ∈ {0, 1}

H⊗n ∣0⟩ = (H ∣0⟩)⊗n = 1√
2n
(∣0⟩ + ∣1⟩)⊗n

= 1√
2n
(∣0⟩ + ∣1⟩) ⊗ (∣0⟩ + ∣1⟩) ⊗ ...⊗ (∣0⟩ + ∣1⟩)

= 1√
2n
∑2n−1
l=0 ∣l⟩



Transformación de Hadamard (2)

H⊗n ∣k⟩ = (H ∣k⟩)⊗n = 1√
2n

n

⊗
j=1
(∣0⟩ + (−1)kj ∣1⟩)

= 1√
2n
(∣0⟩ + (−1)k1 ∣1⟩) ⊗ (∣0⟩ + (−1)k2 ∣1⟩) ⊗ ...⊗ (∣0⟩ + (−1)kn ∣1⟩)

= 1√
2n

2n−1
∑
l=0

n

∏
j=1
(−1)kj lj ∣l⟩ = 1√

2n

2n−1
∑
l=0
(−1)∑

n
j=1 kj lj ∣l⟩ xaxb = xa+b

= 1√
2n

2n−1
∑
l=0
(−1)⊕

n
j=1 kj lj ∣l⟩ = 1√

2n

2n−1
∑
l=0
(−1)k⊙l ∣l⟩

k ⊙ l = ⊕n
j=1 kjlj = k1l1 ⊕ k2l2 ⊕ ...⊕ knln



Circuito cuántico para Deutsch–Jozsa
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∣ψ0⟩ = ( 1√
2n
∑2n−1
l=0 ∣l⟩) ⊗

∣0⟩−∣1⟩√
2
= 1√

2n
∑2n−1
l=0 (∣l⟩ ⊗

∣0⟩−∣1⟩√
2
)

= 1√
2n
∑2n−1
l=0 ∣l⟩ ⊗

∣0⟩−∣1⟩√
2



∣0⟩

∣1⟩

H⊗n

H

∣ψ0⟩

Of

∣ψ1⟩

H⊗n r

∣ψ1⟩ = Of ∣ψ0⟩ = Of ( 1√
2n
∑2n−1
l=0 ∣l⟩ ⊗

∣0⟩−∣1⟩√
2
)

= 1√
2n
∑2n−1
l=0 Of (∣l⟩ ⊗ ∣0⟩−∣1⟩√

2
) = 1√

2n
∑2n−1
l=0 ∣l⟩ ⊗

∣0⊕f(l)⟩−∣1⊕f(l)⟩√
2

= 1√
2n
∑2n−1
l=0 (−1)f(l) ∣l⟩ ⊗

∣0⟩−∣1⟩√
2
= ( 1√

2n
∑2n−1
l=0 (−1)f(l) ∣l⟩) ⊗

∣0⟩−∣1⟩√
2

∣0⊕ f(l)⟩ − ∣1⊕ f(l)⟩ = (−1)f(l)(∣0⟩ − ∣1⟩)



∣0⟩

∣1⟩

H⊗n

H

Of

∣ψ′1⟩

∣0⟩−∣1⟩√
2

H⊗n ∣ψ′2⟩ r

∣ψ′1⟩ = 1√
2n
∑2n−1
l=0 (−1)f(l) ∣l⟩ ∣ψ′2⟩ =H⊗n ∣ψ′1⟩ = 1√

2n
∑2n−1
l=0 (−1)f(l)H⊗n ∣l⟩

∣ψ′2⟩ = 1√
2n
∑2n−1
l=0 (−1)f(l) 1√

2n
∑2n−1
k=0 (−1)k⊙l ∣k⟩

= 1
2n∑

2n−1
l=0 ∑2n−1

k=0 (−1)f(l)+k⊙l ∣k⟩ = 1
2n∑

2n−1
k=0 ∣k⟩∑2n−1

l=0 (−1)f(l)+k⊙l



∣ψ′2⟩ = 1
2n ∑

2n−1
k=0 ∣k⟩∑2n−1

l=0 (−1)f(l)+k⊙l r =M(∣ψ′2⟩) ∈ [0, 1]2
n

La amplitud de probabilidad de ∣0⟩ es

α = 1
2n ∑

2n−1
l=0 (−1)f(l)+0⊙l = 1

2n ∑
2n−1
l=0 (−1)f(l)

Si f es constante α = ±1 y la probabilidad P (r = 0) = ∣α∣2 = 1

Si f es equilibrada, α = 0 y la probabilidad P (r = 0) = ∣α∣2 = 0

2nα = ∑
{f(l)=0}

(−1)0 + ∑
{f(l)=1}

(−1)1 = ∣{f(l) = 0}∣ − ∣{f(l) = 1}∣ = 0


